Abstract

For Internet video services, the high fluctuation of user demands in geographically distributed regions results in low resource utilizations of traditional content distribution network systems. Due to the capability of rapid and elastic resource provisioning, cloud computing emerges as a new paradigm to reshape the model of video distribution over the Internet, in which resources (such as bandwidth, storage) can be rented on demand from cloud data centers to meet volatile user demands. However, it is challenging for a video service provider (VSP) to optimally deploy its distribution infrastructure over multiple geo-distributed cloud data centers. A VSP needs to minimize the operational cost induced by the rentals of cloud resources without sacrificing user experience in all regions. The geographical diversity of cloud resource prices further makes the problem complicated. In this paper, we investigate the optimal deployment problem of cloud-assisted video distribution services and explore the best tradeoff between the operational cost and the user experience. We aim to pave the way for building the next-generation video cloud. Toward this objective, we first formulate the deployment problem into a min-cost network flow problem, which takes both the operational cost and the user experience into account. Then, we apply the Nash bargaining solution to solve the joint optimization problem efficiently and derive the optimal bandwidth provisioning strategy and optimal video placement strategy. In addition, we extend the algorithms to the online case and consider the scenario when peers participate into video distribution. Finally, we conduct extensive simulations to evaluate our algorithms in the realistic settings. Our results show that our proposed algorithms can achieve a good balance among multiple objectives and effectively optimize both operational cost and user experience.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.