Abstract

We study two fundamental graph problems, Graph Connectivity (GC) and Minimum Spanning Tree (MST), in the well-studied Congested Clique model, and present several new bounds on the time and message complexities of randomized algorithms for these problems. No non-trivial (i.e., super-constant) time lower bounds are known for either of the aforementioned problems; in particular, an important open question is whether or not constant-round algorithms exist for these problems. We make progress toward answering this question by presenting randomized Monte Carlo algorithms for both problems that run in O(log log log n) rounds (where n is the size of the clique). Our results improve by an exponential factor on the long-standing (deterministic) time bound of O(log log n) rounds for these problems due to Lotker et al. (SICOMP 2005). Our algorithms make use of several algorithmic tools including graph sketching, random sampling, and fast sorting.The second contribution of this paper is to present several almost-tight bounds on the message complexity of these problems. Specifically, we show that Ω(n2) messages are needed by any algorithm (including randomized Monte Carlo algorithms, and regardless of the number of rounds) that solves the GC (and hence also the MST) problem if each machine in the Congested Clique has initial knowledge only of itself (the so-called KT0 model). In contrast, if the machines have initial knowledge of their neighbors' IDs (the so-called KT1 model), we present a randomized Monte Carlo algorithm for MST that uses O(n polylog n) messages and runs in O(polylog n) rounds. To complement this, we also present a lower bound in the KT1 model that shows that Ω(n) messages are required by any algorithm that solves GC, regardless of the number of rounds used. Our results are a step toward understanding the power of randomization in the Congested Clique with respect to both time and message complexity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call