Abstract

Abstract In mesoscale modeling the scale l of the energy- and flux-containing turbulence is much smaller than the scale Δ of the spatial filter used on the equations of motion, and in large-eddy simulation (LES) it is much larger. Since their models of the subfilter-scale (SFS) turbulence were not designed to be used when l and Δ are of the same order, this numerical region can be called the “terra incognita.” The most common SFS model, a scalar eddy diffusivity acting on the filtered fields, emerges from the conservation equations for SFS fluxes when several terms, including all but one of the production terms, are neglected. Analysis of data from the recent Horizontal Array Turbulence Study (HATS) shows that the neglected production terms can be significant. Including them in the modeled SFS flux equations yields a more general SFS model, one with a tensor rather than a scalar eddy diffusivity. This more general SFS model is probably not necessary in fine-resolution LES or in coarse-resolution mesoscale...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.