Abstract

A dynamic analysis approach for determining nitrite production and consumption rates was established to systematically investigate the characteristics of nitrogen transformation and N2O emission of the completely autotrophic nitrogen removal over nitrite (CANON) process coupled with denitrification using a sequencing batch biofilm reactor (SBBR). The results indicate that anaerobic ammonium-oxidizing bacteria was not inhibited significantly by low C/N ratios. There were no obvious differences in the nitrite production rate, nitrite consumption rate or nitrogen removal among reactors operated with C/N ratios of 0, 0.67 and 1.00, which suggested that the certain carbon source did not significantly affect the nitrite conversion and nitrogen removal in the process. More than 60% of total N2O emission is generated during the initial phase of each period in the SBBR. More than 94.5% of N2O was generated by NO2−-N consumption via denitrification in the process. Interestingly, total N2O production drops by 16.7%, when the C/N ratio increases from 0 to 1. This phenomenon may be caused by the inhibition of N2O production via AOB denitrification. Therefore, an appropriate carbon source (C/N = 1.00) has the beneficial effect of reducing N2O emission by CANON coupled with denitrification. The results of this study provide an important empirical foundation for the mitigation of N2O emission in the CANON process coupled with denitrification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.