Abstract

The multiple-target self-organizing pursuit (SOP) problem has wide applications and has been considered a challenging self-organization game for distributed systems, in which intelligent agents cooperatively pursue multiple dynamic targets with partial observations. This work proposes a framework for decentralized multi-agent systems to improve the implicit coordination capabilities in search and pursuit. We model a self-organizing system as a partially observable Markov game (POMG) featured by large-scale, decentralization, partial observation, and noncommunication. The proposed distributed algorithm–fuzzy self-organizing cooperative coevolution (FSC2) is then leveraged to resolve the three challenges in multi-target SOP: distributed self-organizing search (SOS), distributed task allocation, and distributed single-target pursuit. FSC2 includes a coordinated multi-agent deep reinforcement learning (MARL) method that enables homogeneous agents to learn natural SOS patterns. Additionally, we propose a fuzzy-based distributed task allocation method, which locally decomposes multi-target SOP into several single-target pursuit problems. The cooperative coevolution principle is employed to coordinate distributed pursuers for each single-target pursuit problem. Therefore, the uncertainties of inherent partial observation and distributed decision-making in the POMG can be alleviated. The experimental results demonstrate that by decomposing the SOP task, FSC2 achieves superior performance compared with other implicit coordination policies fully trained by general MARL algorithms. The scalability of FSC2 is proved that up to 2048 FSC2 agents perform efficient multi-target SOP with almost 100% capture rates. Empirical analyses and ablation studies verify the interpretability, rationality, and effectiveness of component algorithms in FSC2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.