Abstract
ABSTRACT Dynamic process simulation and prediction of crowd movement are effective approaches to understanding the complex human behavior system in GIScience. At present, obtaining full-sample individual trajectory data still faces challenges because of privacy and cost constraints, thereby resulting in difficulty solving geographic modeling problems that require full-sample individual data. In this paper, a general model for crowd movement simulation is proposed by taking the dynamic evaluation of tourist carrying capacity as an example. Such method is a multi-granularity coupling model, which considers behavioral process and spatiotemporal heterogeneity of tourists. First, a secrete event-based logic model of tourist behavior is proposed. Second, a social force-based inference method of tourist path is designed. Finally, the simulation and evaluation model of remaining spatial carrying capacity of tourists based on a behavioral dynamic system is achieved. In addition, the correctness and applicability of the model are demonstrated through a case study. The proposed model will positively affect time- and space-sharing analysis and assessment of crowd flow within a specific area of activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.