Abstract

Major depressive disorder (MDD) is a severe psychiatric disorder that currently lacks any objective diagnostic markers. Here, we develop a deep learning approach to discover the mass spectrometric features that can discriminate MDD patients from health controls. Using plasma peptides, the neural network, termed as CMS-Net, can perform diagnosis and prediction with an accuracy of 0.9441. The sensitivity and specificity reached 0.9352 and 0.9517 respectively, and the area under the curve was enhanced to 0.9634. Using the gradient-based feature importance method to interpret crucial features, we identify 28 differential peptide sequences from 14 precursor proteins (e.g. hemoglobin, immunoglobulin, albumin, etc.). This work highlights the possibility of molecular diagnosis of MDD with the aid of chemical and computer science.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.