Abstract

Glasses in the xGd2O3 x (100 - x)[7TeO2 x 3P2O5] system with 0 < or = x < or = 20 mol % have been prepared using the melt quenching method. The influence of gadolinium ions on structural behavior of the phosphate tellurate glass has been investigated using infrared spectroscopy and density functional theory (DFT) calculations. The addition of gadolinium ions into the host glass matrix leads to an increase of the glass network polymerization due to the replacement of P-O-P bonds by the more resistant P-O-Te bonds having as result the improvement of the chemical durability of the glass. The structural evolution of the studied glasses with the gradual increase of the gadolinium oxide content up to 20 mol % could be explained by considering that the excess of oxygen may be accommodated by the conversion of some orthophosphate structural units into metaphosphate or/and pyrophosphate units. X-ray diffraction and IR spectra revealed that heat treatment of the samples also causes an increase of the glass network polymerization for heat treatment times, t, up to 36 h, while for 36 h > t > or = 48 h showed a drastic structural modification which lead to the apparition of the Te4P2O13 crystalline phase. DFT calculations show that tellurium atoms occupy two different sites in the proposed model. In the first case the tellurium atom is coordinated with four oxygen atoms giving a trigonal bipyramide arrangement, while in the second case the tellurium atom is coordinated with three O atoms. The calculated IR absorption spectrum of the proposed model for phosphotellurite glasses is in good agreement with the experimental absorption data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call