Abstract

With the advantages of simple genetic composition, low metabolic background, low energy waste, and high genetic stability, genome-reduced strains, as promising functional chassis, have become an intensive direction for constructing potent biosynthesis factories. Herein, an innovative Genome-Reduced strain-based Active Cell-free Easy-to-make-protein (GRACE) system is built as minimal transcription-translation machinery. In this study, two Escherichia coli genome-reduced strains, ΔW3110 and ΔMG1655, with genome reduction of 11.53% and 37.85%, are fused with the cell-free transcription-translation (CFTT) system. The GRACE systems perform better than the corresponding CFTT systems derived from their parental strains in representative valuable applications, such as the expression and solubilization of membrane proteins or protein polymers, biosensing of inorganic or organic molecules based on different principles, and unnatural amino acid embedding. Obviously, the GRACE system has provided a brand-new enabling platform for cell-free transcription-translation basic and applied studies and also would inspire the potential of genome-reduced strains for versatile applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call