Abstract
Respiratory protective equipment (RPE) is traditionally designed through anthropometric sizing to enable mass production. However, this can lead to long-standing problems of low-compliance, severe skin trauma, and higher fit test failure rates among certain demographic groups, particularly females and non-white ethnic groups. Additive manufacturing could be a viable solution to produce custom-fitted RPE, but the manual design process is time-consuming, cost-prohibitive and unscalable for mass customization. This paper proposes an automated design pipeline which generates the computer-aided design models of custom-fit RPE from unprocessed three-dimensional (3D) facial scans. The pipeline successfully processed 197 of 205 facial scans with <2 min/scan. The average and maximum geometric error of the mask were 0.62 mm and 2.03 mm, respectively. No statistically significant differences in mask fit were found between male and female, Asian and White, White and Others, Healthy and Overweight, Overweight and Obese, Middle age, and Senior groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.