Abstract

Root growth and root system architecture (RSA) are affected by edaphic and genetic factors and they can impact plant growth and farm profitability. Southern highbush blueberries [SHBs (Vaccinium corymbosum hybrids)] develop shallow, fibrous root systems, and exhibit a preference for acidic soils where water and ammonium are readily available. The amendments used to create these soil conditions negatively affect the profitability of SHB plantations. Hence, breeding for RSA traits has been suggested as an alternative to soil amendments. Vaccinium arboreum is a wild species that is used in SHB breeding. V. arboreum exhibits greater drought tolerance and broader soil pH adaptation than SHB, and—according to anecdotal evidence—it develops deep, taproot-like root systems. The present study constitutes the first in-depth study of the RSA of Vaccinium species with the intention of facilitating breeding for RSA traits. Root systems were studied in rhizotron-grown seedling families. In separate experiments, we tested the effect that growth substrate and family pedigree can have on root growth and RSA. Subsequently, a genotyping by sequence approach was used to develop single nucleotide polymorphism (SNP) markers that could be used along with the phenotyping method to investigate the heritability of RSA traits and look for marker-trait associations. We found that RSA is affected by growth substrate and family pedigree. In addition, we found that V. arboreum exhibited greater maximum root depth and a lower percentage of roots in the top 8 cm of soil than SHB, and interspecific hybrids generally exhibited intermediate phenotypes. Also, we found that RSA traits exhibit moderate to low heritability and genetic correlations among them. Finally, we found 59 marker-trait associations. Among these markers, 37 were found to be located in exons, and 16 of them were annotated based on protein homology with entries in National Center for Biotechnology Information (NCBI) GenBank. Altogether, the present study provides tools that can be used to breed for root architecture traits in SHB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.