Abstract
A data warehouse is an important decision support system with cleaned and integrated data for knowledge discovery and data mining systems. In reality, the data warehouse mining system has provided many applicable solutions in industries, yet there are still many problems causing users extra problems in discovering knowledge or even failing to obtain the real and useful knowledge they need. To improve the overall data warehouse mining process, we present an intelligent data warehouse mining approach incorporated with schema ontology, schema constraint ontology, domain ontology and user preference ontology. The structures of these ontologies are illustrated and how they benefit the mining process is also demonstrated by examples utilizing rule mining. Finally, we present a prototype multidimensional association mining system, which with intelligent assistance through the support of the ontologies, can help users build useful data mining models, prevent ineffective pattern generation, discover concept extended rules, and provide an active knowledge re-discovering mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.