Abstract

This paper introduces concepts and algorithms of feature selection, surveys existing feature selection algorithms for classification and clustering, groups and compares different algorithms with a categorizing framework based on search strategies, evaluation criteria, and data mining tasks, reveals unattempted combinations, and provides guidelines in selecting feature selection algorithms. With the categorizing framework, we continue our efforts toward-building an integrated system for intelligent feature selection. A unifying platform is proposed as an intermediate step. An illustrative example is presented to show how existing feature selection algorithms can be integrated into a meta algorithm that can take advantage of individual algorithms. An added advantage of doing so is to help a user employ a suitable algorithm without knowing details of each algorithm. Some real-world applications are included to demonstrate the use of feature selection in data mining. We conclude this work by identifying trends and challenges of feature selection research and development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.