Abstract

The continued and general rise of antibiotic resistance in pathogenic microbes is a well-recognized global threat. Host defense peptides (HDPs), a component of the innate immune system have demonstrated promising potential to become a next generation antibiotic effective against a plethora of pathogens. While the effectiveness of antimicrobial HDPs has been extensively demonstrated in experimental studies, theoretical insights on the mechanism by which these peptides function is comparably limited. In particular, experimental studies of AMP mechanisms are limited in the number of different peptides investigated and the type of peptide parameters considered. This study makes use of the random forest algorithm for classifying the antimicrobial activity as well for identifying molecular descriptors underpinning the antimicrobial activity of investigated peptides. Subsequent manual interpretation of the identified important descriptors revealed that polarity-solubility are necessary for the membrane lytic antimicrobial activity of HDPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.