Abstract

Field-Programmable Gate Arrays (FPGAs) have been aggressively moving to lower gate length technologies. Such a scaling of technology has an adverse impact on the reliability of the underlying circuits in such architectures. Various different physical phenomena have been recently explored and demonstrated to impact the reliability of circuits in the form of both transient error susceptibility and permanent failures. In this work, we analyze the impact of two different types of hard errors, namely, Time- Dependent Dielectric Breakdown (TDDB) and Electromigration (EM) on FPGAs. We also study the performance degradation of FPGAs over time caused by Hot-Carrier Effects (HCE) and Negative Bias Temperature Instability (NBTI). Each study is performed on the components of FPGAs most affected by the respective phenomena, from both the performance and reliability perspective. Different solutions are demonstrated to counter each failure and degradation phenomena to increase the operating lifetime of the FPGAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.