Abstract
AbstractUnder global climate change, urban flooding occurs frequently, leading to huge economic losses and human casualties. Extreme rainfall is one of the direct and key causes of urban flooding, and accurate rainfall estimates at high spatiotemporal resolution are of great significance for real‐time urban flood forecasting. Using existing rainfall intensity measurement technologies, including ground rainfall gauges, ground‐based radar, and satellite remote sensing, it is challenging to obtain estimates of the desired quality and resolution. However, an approach based on processing distributed surveillance camera network imagery through machine learning algorithms to estimate rainfall intensities shows considerable promise. Here, we present a novel approach that first extracts raindrop information from the surveillance camera images (rather than using the raw imagery directly), followed by the use of convolutional neural networks to estimate rainfall intensity from the resulting raindrop information. Evaluation of the approach on 12 rainfall events under both daytime and nighttime conditions shows that generalization ability, and especially nighttime predictive performance, is significantly improved. This represents an important step toward achieving real‐time, high spatiotemporal resolution, measurement of urban rainfall at relatively low cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.