Abstract

Ionizing radiation safety standards developed by the International Commission on Radiological Protection (ICRP) during the past 50-plus years have provided guidance for effective protection of workers and the public from the potentially harmful effects of exposure to ionizing radiation, including cancer. Earlier standards were based primarily on radiation dose rate to organs of the body. More recent recommendations have calculated cancer risk as a function of cumulative dose using a linear no-threshold cancer risk model based on the acute high dose rate exposures received by the Japanese atomic bomb survivors. The underlying assumption in these current recommendations is that risk of radiation-induced cancer is proportional to cumulative dose without threshold. In conflict with this position are the studies of protracted exposures from internally-deposited radionuclides in people and laboratory animals that have demonstrated that cancer induction risk is a function of average dose rate for protracted exposures to ionizing radiation. At lower average dose rates, cancer latency can exceed natural lifespan leading to a virtual threshold. This forum statement proposes that the conflict of these two cancer risk models is explained by the fact that the increased risk of cancer observed in the atomic bomb survivor studies was primarily the result of acute high dose rate promotion of ongoing biological processes that lead to cancer rather than cancer induction. In addition, ionizing radiation-induced cancer is not the result of a simple stochastic event in a single living cell but rather a complex deterministic systemic effect in living tissues. It is recommended that the ICRP consider revising its position in light of this important distinction between cancer promotion and cancer induction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call