Abstract
Abstract During the 2007 NOAA Hazardous Weather Testbed Spring Experiment, the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma produced a daily 10-member 4-km horizontal resolution ensemble forecast covering approximately three-fourths of the continental United States. Each member used the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) model core, which was initialized at 2100 UTC, ran for 33 h, and resolved convection explicitly. Different initial condition (IC), lateral boundary condition (LBC), and physics perturbations were introduced in 4 of the 10 ensemble members, while the remaining 6 members used identical ICs and LBCs, differing only in terms of microphysics (MP) and planetary boundary layer (PBL) parameterizations. This study focuses on precipitation forecasts from the ensemble. The ensemble forecasts reveal WRF-ARW sensitivity to MP and PBL schemes. For example, over the 7-week experiment, the Mellor–Yamada–Janjić PBL and Ferrier MP parameterizations were associated with relatively high precipitation totals, while members configured with the Thompson MP or Yonsei University PBL scheme produced comparatively less precipitation. Additionally, different approaches for generating probabilistic ensemble guidance are explored. Specifically, a “neighborhood” approach is described and shown to considerably enhance the skill of probabilistic forecasts for precipitation when combined with a traditional technique of producing ensemble probability fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.