Abstract
In this work, the challenging task of modelling Hydrogenase is subjected to three different approaches. The first strategy used here is bioorganometallic. A wide range of sulfur containing ferrocene-peptide derivatives were synthesized and fully characterized. As a second approach, organic self-assembled oligoquinoline were designed and synthesized. These two kind of structures were further used a scaffold for Hydrogenase mimics. In the third approach, a theoretical computational study of the ferrocene-peptide derivatives is led. In order to investigate a wider range of ferrocene-peptide as a molecular scaffold, a molecular force field was successfully implemented and validated for CHARMM. After the deprotection of the thiol group in the bioorganometallic approach, the free SH groups were coordinated with iron-carbonyl, so as to mimic the Fe-only Hydrogenase active site. The complexes thus obtained were comprehensively characterized and their electronic and electrochemical properties were extensively studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.