Abstract

In this study, the structural properties and hydrogen adsorption energy of the fluorinated metal-organic framework (MOF)-801 were evaluated using density functional theory (DFT). We calculated the Zr–F bond distance to be approximately 0.225 nm, which is longer than the bond distance in zirconium fluoride compounds. Due to the electronegativity of F, this site was considered as an adsorption site for hydrogen. We determined the adsorption energy to be −5 kcal/mol per hydrogen (H2) molecule, which is higher than that of H2 in pristine MOF. This value is also slightly lower than the adsorption energy in a metal-decorated MOF. The introduction of F atoms is determined to enhance the binding capacity of MOF-801.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.