Abstract
Officially, AI born in 1956. Since then, very impressive progress has been made in many areas - but not in the realm of human level machine intelligence. During much of its early history, AI was rife exaggerated expectations. A headline in an article published in the late forties of last century headlined, Electric brain capable of translating foreign languages is being built. Today, more than half a century later, we do have translation software, but nothing that can approach the quality of human translation. Clearly, achievement of human level machine intelligence is a challenge that is hard to meet. A prerequisite to achievement of human level machine intelligence is mechanization of these capabilities and, in particular, mechanization of natural language understanding. To make significant progress toward achievement of human level machine intelligence, a paradigm shift is needed. More specifically, what is needed is an addition to the armamentarium of AI of two methodologies: (a) a nontraditional methodology of computing with words (CW) or more generally, NL-Computation; and (b) a countertraditional methodology which involves a progression from computing with numbers to computing with words. The centerpiece of these methodologies is the concept of precisiation of meaning. Addition of these methodologies to AI would be an important step toward the achievement of human level machine intelligence and its applications in decision-making, pattern recognition, analysis of evidence, diagnosis, and assessment of causality. Such applications have a position of centrality in our infocentric society.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.