Abstract

MXene is an emerging two-dimensional (2D) nanomaterial composed of several atomic layers of transition metal carbide/nitride/carbonitride. Due to its metal-analogous conductivity and rich surface functional groups, the facile surface modification of MXene is promising for extending its functionality into semiconductors. However, the application of surface-modulated MXene in robust memristor devices remains rarely reported. Here, the organic dye of celestine blue with conjugated skeleton and ionic interaction is employed to modify MXene, which succeeds to serve as the switching element in memristor device with synergetic ionotronic (ionic–electronic) property. Moreover, the device affords highly-robust performance through rational 2D sandwich heterojunction design. The underlying mechanism is elaborately clarified by theoretical charge transport modelling and experimental scanning electron microscopy analysis. This study sheds light on the prospect of high-performance MXene-based memristors through ionotronic modification strategy and provides efficient guidelines for broadening the application of novel 2D nanomaterials in non-volatile memory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call