Abstract
Even though the solid polymer electrolyte has many intrinsic advantages over the liquid electrolyte, its ionic conductivity and mesopore-filling are much poorer than those of the liquid electrolyte, limiting its practical application to electrochemical devices such as dye-sensitized solar cells (DSCs). Two major shortcomings associated with utilizing solid polymer electrolytes in DSCs are first discussed, low ionic conductivity and poor pore-filling in mesoporous photoanodes for DSCs. In addition, future directions for the successful utilization of solid polymer electrolytes toward improving the performance of DSCs are proposed. For instance, the facilitated mass-transport concept could be applied to increase the ionic conductivity. Modified biphasic and triple-phasic structures for the photoanode are suggested to take advantage of both the liquid- and solid-state properties of electrolytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.