Abstract

Refractive index sensors based on the localized surface plasmon resonance (LSPR) have emerged as powerful tools in various chemosensing and biosensing applications. However, owing to their limited decay length and strong radiation damping, LSPR sensors always suffer from low sensitivity and small figure of merit (FOM). Here, we fabricate a plasmonic nanocavity sensor consisting of a hexagonal Au nanoplate positioned over an ultrasmooth Au film. The strong coupling between the nanoplate and the lower metal film allows for the formation of a plasmonic gap mode that enhances the interaction of the local field with the ambient glycerol solution to increase the sensitivity. Meanwhile, the plasmonic gap mode has a trait of an antiphase charge oscillation in the gap region, imparting a strongly reduced radiative damping and a subsequently promoted FOM. The performance of our proposed refractive index sensor is further boosted by decreasing the gap size of the nanocavity, yielding an outstanding FOM of 11.2 RIU-1 that is the highest yet reported for LSPR sensing in a single nanostructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.