Abstract

This paper presents an investigation of several techniques that increase the accuracy of online handwritten Chinese character recognition (HCCR). We propose a new training strategy named DropDistortion to train a deep convolutional neural network (DCNN) with distorted samples. DropDistortion gradually lowers the degree of character distortion during training, which allows the DCNN to better generalize. Path signature is used to extract effective features for online characters. Further improvement is achieved by employing spatial stochastic max-pooling as a method of feature map distortion and model averaging. Experiments were carried out on three publicly available datasets, namely CASIA-OLHWDB 1.0, CASIA-OLHWDB 1.1, and the ICDAR2013 online HCCR competition dataset. The proposed techniques yield state-of-the-art recognition accuracies of 97.67%, 97.30%, and 97.99%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.