Abstract

Lithium-rich manganese-based layered oxides (LRMOs) have received attention from both the academic and the industrial communities in recent years due to their high specific capacity (theoretical capacity ≥250 mAhg-1), low cost, and excellent processability. However, the large-scale applications of these materials still face unstable surface/interface structures, unsatisfactory cycling/rate performance, severe voltage decay, etc. Recently, solid evidence has shown that lattice oxygen in LRMOs easily moves and escapes from the particle surface, which inspires significant efforts on stabilizing the surface/interfacial structures of LRMOs. In this review, the main issues associated with the surface of LRMOs together with the recent advances in surface modifications are outlined. The critical role of outside-in surface decoration at both atomic and mesoscopic scales with an emphasis on surface coating, surface doping, surface structural reconstructions, and multiple-strategy co-modifications is discussed. Finally, the future development and commercialization of LRMOs are prospected. Looking forward, the optimal surface modifications of LRMOs may lead to a low-cost and sustainable next-generation high-performance battery technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.