Abstract

A detailed study carried out in 1996–1997 showed that manufacturing cost of crystalline silicon PV modules could be lowered to 1 ECU/Wp when the c-Si annual module production level reaches 500 MWp while an annual production of only 60 MWp would lower production cost of thin-film PV modules to 0.6 ECU/Wp. During 1976–2003, the PV module price has followed the 80% learning curve with cumulative production volume. However, the price reduction has slowed since because of the polysilicon supply problem. Because of their high potential for improvement, thin-film PV and especially copper (Cu)–indium (In)–gallium (Ga)–selenide (Se)-sulfide (CIGS) technology have the potential for growing at the fastest rate and consequently not only to complement the lagging c-Si PV production but also to assist in following the 80% learning curve. This paper reviews the CIGS PV manufacturing processes in comparison to those of other PV technologies and predicts that annual production volume of CIGS thin-film PV modules will exceed 1 GW/year within the next 10 years.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.