Abstract

Higher order fuzzy logic systems (FLSs), such as interval type-2 FLSs, have been shown to be very well suited to deal with the high levels of uncertainties present in the majority of real-world applications. General type-2 FLSs are expected to further extend this capability. However, the immense computational complexities associated with general type-2 FLSs have, until recently, prevented their application to real-world control problems. This paper aims to address this problem by the introduction of a complete representation framework, which is referred to as zSlices-based general type-2 fuzzy systems. The proposed approach will lead to a significant reduction in both the complexity and the computational requirements for general type-2 FLSs, while it offers the capability to represent complex general type-2 fuzzy sets. As a proof-of-concept application, we have implemented a zSlices-based general type-2 FLS for a two-wheeled mobile robot, which operates in a real-world outdoor environment. We have evaluated the computational performance of the zSlices-based general type-2 FLS, which is suitable for multiprocessor execution. Finally, we have compared the performance of the zSlices-based general type-2 FLS against type-1 and interval type-2 FLSs, and a series of results is presented which is related to the different levels of uncertainty handled by the different types of FLSs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call