Abstract

Computational methods can potentially accelerate development of more efficient organic materials for second harmonic generation. Here, we test the method that includes the evolutionary algorithm for predicting crystal structure and prognosis of nonlinear optical properties based on the predicted structure. For this test, we selected 2-iodo-3-hydroxypyridine, which exhibits second harmonic generation intensity comparable to that of urea. We performed global minimization of the lattice energy and found the experimental structure when many-body dispersion correction is added to the density functional theory values. We analyzed geometric preferences of the halogen bonding in predicted virtual polymorphs. We also found linear correlation between the lengths of the iodine–iodine halogen bonds and calculated second order susceptibilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.