Abstract

Summary Densely-fractured oil-wet carbonate fields pose a true challenge for oil recovery that traditional primary and secondary processes fail to meet. The difficulty arises from the combination of two unfavorable characteristics: First, the dense fracturing frustrates an efficient waterflood; second, because of the oil-wetness, the water pressure exceeds the oil pressure inside the matrix blocks, thus inhibiting spontaneous imbibition of water. In the past decade, using a new class of surfactants, enhanced oil recovery (EOR) researchers have studied the options to chemically revert the wettability of carbonate rock without drastically decreasing the oil-water interfacial tension. These chemicals, termed "wettability modifiers" (WMs), effectively reverse the sign of capillary pressure at the prevalent saturation. With the oil pressure exceeding the water pressure, the capillary pressure becomes the driving force for oil expulsion from the matrix and into the fracture system. Previous publications on chemical wettability modification focused on the performance of different chemical wettability modifiers for a chosen rock/oil/brine system. In some cases, they demonstrated an almost full oil recovery from core plugs. Little attention, however, has been given to the mechanism underlying the transport of the chemical into the matrix block and to the proper scaling of laboratory results to reservoir size. The present study aims to demonstrate that imbibition after wettability modification is diffusion-limited. To this end, the recovery profiles for spontaneous capillary imbibition, as well as for imbibition after wettability modification, are calculated. The results are then used to compare with the data of Amott cell imbibition experiments. It is confirmed that in both cases, the cumulative recovery is initially proportional to the square root of time. Imbibition after wettability modification, however, takes approximately 1,000 times longer than spontaneous capillary imbibition into a water-wet medium. The slow recovery observed in the case of imbibition after wettability modification is in excellent agreement with the assumption that, in the absence of significant spontaneous imbibition, the WM, to unfold its action, must first diffuse into the porous medium. In any diffusion process, the time scale is linked to the square of the length scale of the medium. Therefore, it would take up to 1,000 times longer (an equivalent of 200 years) before the same recovery is obtained from a meter-scale matrix block as is obtained from a centimeter-scale plug in a laboratory in 100 days. Consequently, unless a significantly faster transport mechanism for the wettability modifier is identified, or unless viscous forces or buoyancy enable forced imbibition, the chemical wettability modification of fractured oil-wet carbonate rock does not provide an economically interesting opportunity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call