Abstract

Water beetles are proficient drag-powered swimmers, with oar-like legs. Inspired by this mechanism, here we propose a miniature robot, with mobility provided by a pair of legs with swimming appendages. The robot has optimized linkage structure to maximize the stroke angle, which is actuated by a single DC motor with a series of gears and a spring. A simplified swimming appendage model is proposed to calculate the deflection due to the applied drag force, and is compared with simulated data using COMSOL Multiphysics. Also, the swimming appendages are optimized by considering their locations on the legs using two fitness functions, and six different configurations are selected. We investigate the performance of the robot with various types of appendage using a high-speed camera, and motion capture cameras. The robot with the proposed configuration exhibits fast and efficient movement compared with other robots. In addition, the locomotion of the robot is analyzed by considering its dynamics, and compared with that of a water boatman (Corixidae).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.