Abstract

Certifying security controls is required for information systems that are either federally maintained or maintained by a US government contractor. As described in the NIST SP800-53, certified and accredited information systems are deployed with an acceptable security threat risk. Self-adaptive information systems that allow functional and decision-making changes to be dynamically configured at runtime may violate security controls increasing the risk of security threat to the system. Methods are needed to formalize the process of certification for security controls by expressing and verifying the functional and non-functional requirements to determine what risks are introduced through self-adaptation. We formally express the existence and behavior requirements of the mechanisms needed to guarantee the security controls' effectiveness using audit controls on program example. To reason over the risk of security control compliance given runtime self-adaptations, we use the KIV theorem prover on the functional requirements, extracting the verification concerns and workflow associated with the proof process. We augment the MAPE-K control loop planner with knowledge of the mechanisms that satisfy the existence criteria expressed by the security controls. We compare self-adaptive plans to assess their risk of security control violation prior to plan deployment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call