Abstract

PurposeThe numerous spoil grounds brought about by mega transportation infrastructure projects which can be influenced by the ecological environment. To achieve better management of spoil grounds, this paper aims to assess their comprehensive risk levels and categorize them into different categories based on ecological environmental risks.Design/methodology/approachBased on analysis of the environmental characteristics of spoil grounds, this paper first comprehensively identified the ecological environmental risk factors and developed a risk assessment index system to quantitatively describe the comprehensive risk levels. Second, this paper proposed a comprehensive model to determine the risk assessment and categorization of spoil ground group in mega projects integrating improved projection pursuit clustering (PPC) method and K-means clustering algorithm. Finally, a case study of a spoil ground group (includes 50 spoil grounds) in a mega infrastructure project in western China is presented to demonstrate and validate the proposed method.FindingsThe results show that our proposed comprehensive model can efficiently assess and categorize the spoil grounds in the group based on their comprehensive ecological environmental risk. In addition, during the process of risk assessment and categorization of spoil grounds, it is necessary to distinguish between sensitive factors and nonsensitive factors. The differences between different categories of spoil grounds can be recognized based on nonsensitive factors, and high-risk spoil grounds which need to be focused more on can be identified according to sensitive factors.Originality/valueThis paper develops a comprehensive model of risk assessment and categorization of a group of spoil grounds based on their ecological environmental risks, which can provide a reference for the management of spoil grounds in mega projects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.