Abstract

Earthquake early warning (EEW) is one of the important tools to reduce the hazard of earthquakes. In contemporary seismology, EEW is typically transformed into a fast classification of earthquake magnitude, i.e., large magnitude earthquakes that require warning are in the positive category and vice versa in the negative category. However, the current standard information signal processing routines for magnitude fast classification are time-consuming and vulnerable to data imbalance. Therefore, in this study, Deep Learning (DL) algorithms are introduced to assist with EEW. For the three-component seismic waveform record of 7 s obtained from the China Earthquake Network Center (CENC), this paper proposes a DL model (EEWMagNet), which accomplishes the extraction of spatial and temporal features through DenseBlock with Bottleneck and Multi-Head Attention. Extensive experiments on Chinese field data demonstrate that the proposed model performs well in the fast classification of magnitude. Moreover, the comparison experiments demonstrate that the epicenter distance information is indispensable, and the normalization has a negative effect on the model to capture accurate amplitude information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.