Abstract
To detect cancer at a very early state it is essential to detect a very small quantity of cancerous cells. One very sensitive method relies on targeting the cancer cells using antibody labeled single-core magnetic nanoparticles and detecting the relaxation of the magnetization using instruments based on superconducting quantum interference devices (SQUIDs). However, the localization suffers from inverse-problem issues similar to those found in magnetoencephalography. On the other hand, the same magnetic nanoparticles can also work as contrast agents for magnetic resonance imaging. Through the combination of superparamagnetic relaxometry and ultra-low field magnetic resonance imaging (ULF MRI), in one and the same instrument, the accuracy of the magnetic moment localization can be enhanced and anatomical information can also be obtained. Results on superparamagnetic relaxometry and the dipole localization accuracy in our seven-channel low-Tc SQUID-gradiometer array are reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.