Abstract
The widespread usage of high-definition screens on edge devices stimulates a strong demand for efficient image restoration algorithms. The way of caching deep learning models in a look-up table (LUT) is recently introduced to respond to this demand. However, the size of a single LUT grows exponentially with the increase of its indexing capacity, which restricts its receptive field and thus the performance. To overcome this intrinsic limitation of the single-LUT solution, we propose a universal method to construct multiple LUTs like a neural network, termed MuLUT. First, we devise novel complementary indexing patterns, as well as a general implementation for arbitrary patterns, to construct multiple LUTs in parallel. Second, we propose a re-indexing mechanism to enable hierarchical indexing between cascaded LUTs. Finally, we introduce channel indexing to allow cross-channel interaction, enabling LUTs to process color channels jointly. In these principled ways, the total size of MuLUT is linear to its indexing capacity, yielding a practical solution to obtain superior performance with the enlarged receptive field. We examine the advantage of MuLUT on various image restoration tasks, including super-resolution, demosaicing, denoising, and deblocking. MuLUT achieves a significant improvement over the single-LUT solution, e.g., up to 1.1 dB PSNR for super-resolution and up to 2.8 dB PSNR for grayscale denoising, while preserving its efficiency, which is 100× less in energy cost compared with lightweight deep neural networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE transactions on pattern analysis and machine intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.