Abstract
Insertion of transition metal species into crystalline alumina at low temperatures is proposed to achieve the dispersion of these species at atomic level paired with exceptional textural properties. Precisely, MeAl2O4/γ-Al2O3 (Me = Mn, Fe, Co, Ni, and/or Cu) nanostructured ceramic catalysts were fabricated with ultra large mesopores (16−30 nm), and high specific surface area (180−290 m2 g−1) and pore volume (1.1-1.6 cm3 g−1). These ceramics were applied as efficient catalysts for the selective catalytic reduction (SCR) of NO with NH3, and their selectivity was discussed in terms of N2O formation, an undesirable byproduct. The catalysts containing Fe, Cu, or Mn showed the highest activities, however, within different temperature ranges. Further tuning of the catalytic activity and selectivity was achieved by creating ceramic catalysts with mixed compositions, e.g., CuFe and MnFe. Upon insertion of the transition metal species into crystalline structure of alumina to maximize atom efficiency, the N2O formation profile did not change significantly for all metal aluminates except MnAl2O4, indicating that these catalysts are suitable for SCR and selectively promote the reduction of NO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.