Abstract

With simple connectivity and fast-growing demand of smart devices and networks, IoT has become more prone to cyber attacks. In order to detect and prevent cyber attacks in IoT networks, intrusion detection system (IDS) plays a crucial role. However, most of the existing IDS have dimensionality curse that reduces overall IoT systems efficiency. Hence, it is important to remove repetitive and irrelevant features while designing effective IDS. Motivated from aforementioned challenges, this paper presents an intelligent cyber attack detection system for IoT network using a novel hybrid feature reduced approach. This technique first performs feature ranking using correlation coefficient, random forest mean decrease accuracy and gain ratio to obtain three different feature sets. Then, features are combined using a suitably designed mechanism (AND operation), to obtain single optimized feature set. Finally, the obtained reduced feature set is fed to three well-known machine learning algorithms such as random forest, K-nearest neighbor and XGBoost for detection of cyber attacks. The efficiency of the proposed cyber attack detection framework is evaluated using NSL-KDD and two latest IoT-based datasets namely, BoT-IoT and DS2OS. Performance of the proposed framework is evaluated and compared with some recent state-of-the-art techniques found in literature, in terms of accuracy, detection rate (DR), precision and F1 score. Performance analysis using these three datasets shows that the proposed model has achieved DR up to 90%–100%, for most of the attack vectors that has close similarity to normal behaviors and accuracy above 99%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call