Abstract

AbstractPoint defect formation and stabilization properties, as well as their peculiar spectroscopic characteristics, locally modify the optical properties of insulating materials. Thin layers containing high concentrations of colour centres, hosted in a LiF single crystal and/or a polycrystalline matrix, offer the opportunity to develop innovative light‐emitting photonic devices. Control of all the critical parameters should be required on spatial dimension comparable with the optical wavelengths. Recent developments in laser technologies, electron and particles beam methods, and novel photon sources, have opened a wide range of opportunities. An overview of the most significant advances in this field is provided, with particular emphasis on colour‐centre LiF‐based innovative miniaturised light sources, optical amplifiers and lasers. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.