Abstract

The use of remote sensing in time series analysis enables wall-to-wall monitoring of the land surface and is critical for assessing and understanding land cover and land use change and for understanding the Earth system as a whole. However, variability in remote sensing observation frequency through time and across space presents challenges for producing consistent change detection results throughout the available satellite record using approaches such as the Continuous Change Detection and Classification (CCDC) change detection methodology. Here we investigate new modifications to this methodology with the goal of improving accuracy and consistency in results and increasing flexibility for operational usage and future development. The modified method (Band-First Probability, or CCD-BFP) change detection procedure works by calculating a test for each band through time before summarizing between bands. We evaluate the CCD-BFP method compared to an existing implementation of CCDC using a variety of approaches, including a validation dataset of human-interpreted locations, comparison with data from fire events, use of simulated remote sensing data, and qualitative inspection of areas of interest. We find CCD-BFP improves consistency across time and space compared to the existing implementation of CCDC, with more similarity in rates of change across Landsat swath boundaries and before and after the launch of Landsat 7. Also, we find that CCD-BFP detects more of the change events in the validation dataset while reducing the overall number of change detections, indicating that it is able to more accurately capture the most notable land surface change events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.