Abstract

AbstractThe electrochemical carbon dioxide reduction reaction (ECDRR) driven by clean energy resources (such as wind, solar, etc.) to chemical feedstock and fuels is an attractive route to balance the carbon‐neutral cycle and for regenerating fuels. To date, the ECDRR has been the most promising technology for the conversion of carbon dioxide (CO2) to carbon‐building blocks, which has a huge market demand and increasing annual global production. Despite tremendous research, the conversion of CO2 into valuable fuels and chemicals is still challenging due to the highly inert and diverse CO2 reduction pathways towards high Faradaic efficiency, current density, and stability in the industrialization of ECDRR process. Herein, the most recent developments such as 1) the evaluation of the role of an electrocatalyst according to industrial production demands; 2) the performance of nanostructured electrocatalyst, electrolyte, and devices; 3) advantages and disadvantages of promising metals, such as Au, Ag, and Cu, and single‐atoms, such as Ni, Fe, and Co; and 4) the electrolyte effects, pH effects, and ion effects are described with a vision for ECDRR electrocatalysis towards industrialization. Finally, this review aims to offer forward‐looking, on‐going research/possible activities, together with future perspectives on the ECDRR process from a small‐scale production to industrialization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call