Abstract

Graph neural networks (GNNs) have transformed network analysis, leading to state-of-the-art performance across a variety of tasks. Especially, GNNs are increasingly been employed as detection tools in the AIoT environment in various security applications. However, GNNs have also been shown vulnerable to adversarial graph perturbation. We present the first approach for certifying robustness of general GNNs against attacks that add or remove graph edges either at training or prediction time. Extensive experiments demonstrate that our approach significantly outperforms prior art in certified robust predictions. In addition, we show that a non-certified adaptation of our method exhibits significantly better robust accuracy against state-of-the-art attacks that past approaches. Thus, we achieve both the best certified bounds and best practical robustness of GNNs to structural attacks to date.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.