Abstract
Objective. Brain–computer interfaces (BCIs) exploit computational features from brain signals to perform a given task. Despite recent neurophysiology and clinical findings indicating the crucial role of functional interplay between brain and cardiovascular dynamics in locomotion, heartbeat information remains to be included in common BCI systems. In this study, we exploit the multidimensional features of directional and functional interplay between electroencephalographic and heartbeat spectra to classify upper limb movements into three classes. Approach. We gathered data from 26 healthy volunteers that performed 90 movements; the data were processed using a recently proposed framework for brain–heart interplay (BHI) assessment based on synthetic physiological data generation. Extracted BHI features were employed to classify, through sequential forward selection scheme and k-nearest neighbors algorithm, among resting state and three classes of movements according to the kind of interaction with objects. Main results. The results demonstrated that the proposed brain–heart computer interface (BHCI) system could distinguish between rest and movement classes automatically with an average 90% of accuracy. Significance. Further, this study provides neurophysiology insights indicating the crucial role of functional interplay originating at the cortical level onto the heart in the upper limb neural control. The inclusion of functional BHI insights might substantially improve the neuroscientific knowledge about motor control, and this may lead to advanced BHCI systems performances.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.