Abstract

It is very important to explore novel synthesis strategies for constructing highly active and inexpensive electrocatalysts for water-splitting. In present work, a novel and efficient coordination-polymerization-pyrolysis (CPP) strategy was developed to prepare cobalt phosphide nanoparticles modified N-doped porous carbon spheres (CoP@NPCSs) hybridsas a powerful catalyst for overall water-splitting (OWS). It can be found that both the carbonization temperatures and the metal contents affect the electrocatalytic performances. As a result, a device assembled with CoP@NPCSs demonstrates low potential (1.643 V @ 10 mA·cm-2) and good stabilization for OWS. Besides, other transition metal phosphides (TMPs)-based materials also can be synthesized by the CPP approach, evidencing the generality of the CPP strategy. Here, we not only constructs a high-efficiency OWS catalyst, but also broadens the synthetic methodology of TMPs from nanoscale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call