Abstract

The last decades have witnessed the discovery of tens of thousands of rare earth (RE) (e.g., Eu2+) and non-RE (e.g., Mn2+) doped photonic materials for near-ultraviolet (NUV) and blue converted white light-emitting diodes (wLEDs), but the future development of wLEDs technology is limited greatly by the intrinsic problems of these traditional dopants, such as the insurmountable visible light reabsorption, the weak absorption strength in NUV or blue region, and so on. Here we report a feasible strategy guided by density functional theory (DFT) calculation to discover novel Bi3+ red luminescent materials, which can solve the above problems eventually. Once the untraditional ion of bismuth is doped into ZnWO4 crystal, multiple defects can be possibly created in different charge states such as BiZn, BiW, interstitial Bi, and even defect complexes of 2 BiZnVW among others, and they, as DFT calculated results illustrate, have the potential to produce emission spanning from visible to near-infrared. As confirmed ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.