Abstract
Large Language Models (LLMs) lack robust metacognitive learning abilities and depend on human-provided algorithms and prompts for learning and output generation. Metacognition involves processes that monitor and enhance cognition. Learning how to learn - metacognitive learning - is crucial for adapting and optimizing learning strategies over time. Although LLMs possess limited metacognitive abilities, they cannot autonomously refine or optimize these strategies. Humans possess innate mechanisms for metacognitive learning that enable at least two unique abilities: discerning which metacognitive strategies are best and automatizing learning strategies. These processes have been effectively modeled in the ACT-R cognitive architecture, providing insights on a path toward greater learning autonomy in AI. Incorporating human-like metacognitive learning abilities into AI could potentially lead to the development of more autonomous and versatile learning mechanisms, as well as improved problem-solving capabilities and performance across diverse tasks.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.