Abstract

Artificial intelligence applications within the geosciences are becoming increasingly common, yet there are still many challenges involved in adapting established techniques to geoscience data sets. Applications in the realm of volcanic hazards assessment show great promise for addressing such challenges. Here, we describe a Jupyter Notebook we developed that ingests real-time Global Navigation Satellite System (GNSS) data streams from the EarthCube CHORDS (Cloud-Hosted Real-time Data Services for the geosciences) portal TZVOLCANO, applies unsupervised learning algorithms to perform automated data quality control (“noise reduction”), and explores autonomous detection of unusual volcanic activity using a neural network. The TZVOLCANO CHORDS portal streams real-time GNSS positioning data in 1[Formula: see text]s intervals from the TZVOLCANO network, which monitors the active volcano Ol Doinyo Lengai in Tanzania, through UNAVCO’s real-time GNSS data services. UNAVCO’s real-time data services provide near-real-time positions processed by the Trimble Pivot system. The positioning data (latitude, longitude and height) are imported into the Jupyter Notebook presented in this paper in user-defined time spans. The positioning data are then collected in sets by the Jupyter Notebook and processed to extract a useful calculated variable in preparation for the machine learning algorithms, of which we choose the vector magnitude for further processing. Unsupervised K-means and Gaussian Mixture machine learning algorithms are then utilized to locate and remove data points (“filter”) that are likely caused by noise and unrelated to volcanic signals. We find that both the K-means and Gaussian Mixture machine learning algorithms perform well at identifying regions of high noise within tested GNSS data sets. The filtered data are then used to train an artificial intelligence neural network that predicts volcanic deformation. Our Jupyter Notebook has promise to be used for detecting potentially hazardous volcanic activity in the form of rapid vertical or horizontal displacement of the Earth’s surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call