Abstract

Abstract Computational materials science relies on simple, yet efficient, measures and indicators of the modeled materials’ properties. Ideally, the desired properties should be linked to such scalar quantities that can be obtained in polynomial time and efficiently integrated within automated high-throughput screening loops for screening and sorting out the evaluated materials to the desired categories. Here, we focus on the freestanding gapped 2D materials and scalar indicator of their band gap sensitivity to the presence of additional stacked 2D layer/s. The proposed measure uses only a freestanding model of a given material, and it is based on an automated integration of the electron density of frontier orbitals extending into the vacuum within the model unit cell. The usefulness and limitations of such an approach for materials pre-screening are demonstrated on a handful of 2D materials, like, e.g. MXenes, graphane, fluorographene, or, allotropes of phosphorus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.