Abstract

The need for a fast and robust method to characterize nanostructure thickness is growing due to the tremendous number of experiments and their associated applications. By automatically analyzing the microscopic image texture of MoS2 and WS2, it was possible to distinguish monolayer from few-layer nanostructures with high accuracy for both materials. Three methods of texture analysis (TA) were used: grey level histogram (GLH), grey levels co-occurrence matrix (GLCOM), and run-length matrix (RLM), which correspond to first, second, and higher-order statistical methods, respectively. The best discriminating features were automatically selected using the Fisher coefficient, for each method, and used as a base for classification. Two classifiers were used: artificial neural networks (ANN), and linear discriminant analysis (LDA). RLM with ANN was found to give high classification accuracy, which was 89% and 95% for MoS2 and WS2, respectively. The result of this work suggests that RLM, as a higher-order TA method, associated with an ANN classifier has a better ability to quantify and characterize the microscopic structure of nanolayers, and, therefore, categorize thickness to the proper class.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.