Abstract
Background and objectivesThe diagnosis of Developmental Dysplasia of the Hip (DDH) in infants is currently made primarily by ultrasound. However, two-dimensional ultrasound (2DUS) images capture only an incomplete portion of the acetabular shape, and the alpha and beta angles measured on 2DUS for the Graf classification technique show high inter-scan and inter-observer variability. This variability relates partly to the manual determination of the apex point separating the acetabular roof from the ilium during index measurement. This study proposes a new 2DUS image processing technique for semi-automated tracing of the bony surface followed by automatic calculation of two indices: a contour-based alpha angle (αA), and a new modality-independent quantitative rounding index (M). The new index M is independent of the apex point, and can be directly extended to 3D surface models. MethodsWe tested the proposed indices on a dataset of 114 2DUS scans of infant hips aged between 4 and 183 days scanned using a 12MHz linear transducer. We calculated the manual alpha angle (αM), coverage, contour-based alpha angle and rounding index for each of the recordings and statistically evaluated these indices based on regression analysis, area under the receiver operating characteristic curve (AUC) and analysis of variance (ANOVA). ResultsProcessing time for calculating αA and M was similar to manual alpha angle measurement, ∼30s per image. Reliability of the new indices was high, with inter-observer intraclass correlation coefficients (ICC) 0.90 for αA and 0.89 for M. For a diagnostic test classifying hips as normal or dysplastic, AUC was 93.0% for αA vs. 92.7% for αM, 91.6% for M alone, and up to 95.7% for combination of M with αM, αA or coverage. ConclusionsThe rounding index provides complimentary information to conventional indices such as alpha angle and coverage. Calculation of the contour-based alpha angle and rounding index is rapid, shows potential to improve the reliability and accuracy of DDH diagnosis from 2DUS, and could be extended to 3D ultrasound in future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.